Modeling Urban Growth and Form with Spatial Entropy

Author:

Chen Yanguang1ORCID

Affiliation:

1. Department of Geography, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China

Abstract

Entropy is one of the physical bases for the fractal dimension definition, and the generalized fractal dimension was defined by Renyi entropy. Using the fractal dimension, we can describe urban growth and form and characterize spatial complexity. A number of fractal models and measurements have been proposed for urban studies. However, the precondition for fractal dimension application is to find scaling relations in cities. In the absence of the scaling property, we can make use of the entropy function and measurements. This paper is devoted to researching how to describe urban growth by using spatial entropy. By analogy with fractal dimension growth models of cities, a pair of entropy increase models can be derived, and a set of entropy-based measurements can be constructed to describe urban growing process and patterns. First, logistic function and Boltzmann equation are utilized to model the entropy increase curves of urban growth. Second, a series of indexes based on spatial entropy are used to characterize urban form. Furthermore, multifractal dimension spectra are generalized to spatial entropy spectra. Conclusions are drawn as follows. Entropy and fractal dimension have both intersection and different spheres of application to urban research. Thus, for a given spatial measurement scale, fractal dimension can often be replaced by spatial entropy for simplicity. The models and measurements presented in this work are significant for integrating entropy and fractal dimension into the same framework of urban spatial analysis and understanding spatial complexity of cities.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Multidisciplinary,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3