Development of a Simple and Powerful Analytical Method for Formaldehyde Detection and Quantitation in Blood Samples

Author:

Kim Yong-Hyun12ORCID,Park Jeongsik1

Affiliation:

1. Jeonbuk Department of Inhalation Research, Korea Institute of Toxicology, Jeongeup 56212, Republic of Korea

2. Human and Environmental Toxicology, University of Science and Technology, Daejeon 34113, Republic of Korea

Abstract

Human beings are easily exposed to formaldehyde (FA) in a living environment. Entry of FA into the human body can have adverse effects on human health, depending on the FA concentration. Thus, a quantitative analysis of FA in blood is necessary in order to estimate its effect on the human body. In this study, a simple and rapid analytical method for the quantitation of FA in blood was developed. The total analysis time, including the pretreatment procedure, was less than 20 min. To ensure a stable analysis, blood samples were stabilized using tripotassium ethylenediaminetetraacetic acid solution, and FA was selectively derivatized using 2,4-dinitrophenylhydrazine as pretreatment procedures. The pretreated samples were analyzed using a high-performance liquid chromatography-UV system, which is the most common choice for analyzing small-molecule aldehydes like formaldehyde. Verification of the pretreatment methods (stabilization and derivatization) using FA standards confirmed that the pretreatment methods are highly reliable in the calibration range 0.012–5.761 ng μL–1 (slope = 684,898, R2 = 0.9998, and limit of detection = 0.251 pg·μL–1). Analysis of FA in the blood samples of a Yucatan minipig using the new method revealed an average FA concentration of 1.98 ± 0.34 ng μL–1 (n = 3). Blood samples spiked with FA standards were analyzed, and the FA concentrations were found to be similar to the theoretical concentrations (2.16 ± 0.81% difference). The method reported herein can quantitatively analyze FA in blood at a sub-nanogram level within a short period of time and is validated for application in blood analysis.

Funder

Korea Institute of Toxicology

Publisher

Hindawi Limited

Subject

Computer Science Applications,Instrumentation,General Chemical Engineering,Analytical Chemistry

Reference39 articles.

1. Increased IgE Antiovalbumin Level in Mice Exposed to Formaldehyde

2. Formaldehyde exposure enhances inhalative allergic sensitization in the guinea pig;F. Reidel;Allergy,1996

3. Exposure to gaseous formaldehyde induces IgE-mediated sensitization to formaldehyde in school-children

4. Allergen/irritant interaction - its role in sensitization and allergic disease

5. Formaldehyde;IARC (International Agency for Research on Cancer),2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3