Simulation of a Novel Tubular Microalgae Photobioreactor with Aerated Tangent Inner Tubes: Improvements in Mixing Performance and Flashing-Light Effects

Author:

Cui Xuyang12,Yang Junhong12ORCID,Feng Yuanzheng12,Zhang Wenwen12

Affiliation:

1. Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, MOE, Tianjin University, Tianjin 300350, China

2. School of Mechanical Engineering, Tianjin University, Tianjin 300350, China

Abstract

At present, large-scale and high-efficiency microalgal cultivation is the key to realizing the technology for carbon capture and storage (CCS) and bioresource recovery. Meanwhile, tubular photobioreactors (PBRs) have great potential for microalgal cultivation due to their high productivity. To improve the mixing performance and flashing-light effect, a novel tube PBR with the inner tube tangential to the outer tube was developed, whose radial aeration pores are situated along the length of the inner tube. The direction of aeration, aeration rate, light/dark cycle period (L/D), light-time ratio, average turbulent kinetic energy (TKE), and degree of synergy between the velocity and direction of the light field in the PBR were optimized by a computational fluid dynamics (CFD) simulation and field synergy theory. The results show that a downwards aeration direction of 30° and an aeration rate of 0.7 vvm are the most conducive to reducing the dead zone and improving the light/dark cycle frequency. Compared to the concentric double-tube PBR, the light/dark cycle frequency and light time of the tangent double-tube PBR increased by 78.2% and 36.2% to 1.8 Hz and 47.8%, respectively, and the TKE was enhanced by 48.1% from 54 to 80 cm2·s−2. Meanwhile, field synergy theory can be extended and applied to the design of tubular microalgae PBRs, and the average synergy of the light and velocity gradients across the cross-section increased by 38% to 0.69. The tangential inner tube aeration structure generated symmetrical vertical vortices between the light and dark areas in the PBR, which significantly improved the mixing performance and flashing-light effect. This novel design can provide a more suitable microenvironment for microalgal cultivation and is promising for bioresource recovery applications and improving the yield of microalgae.

Funder

Natural Science Foundation of Tianjin City

Publisher

Hindawi Limited

Subject

Ecology, Evolution, Behavior and Systematics,Physiology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3