Affiliation:
1. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qindao 266510, China
Abstract
Traditional milling cutter bars are generally made up of metals and exhibit poor capacity of chatter suppression. This study proposes an anisotropic composites tapered cutter bar for increasing natural frequency and damping and finally achieves the goal of enhancing chatter stability. Based on Hamilton principle and Euler–Bernoulli beam theory, the partial differential motion equations of the cutting system with a 3D rotating tapered composite cutter bar are established. Next, using the Galerkin method, the equations of motion are discretized so as to derive ordinary differential equations. In the model, damping modeling of the composite cutter bar is achieved theoretically by using damping dissipation constitutive relations for viscoelastic composites. Moreover, by introducing the rotating effect of the 3D cutter bar in the 2-DOF analytical model of stability analysis first proposed for a fixed-type cutter bar, an improved prediction model is developed and used to solve the stability lobes of the cutting system in the frequency domain analytically. Furthermore, the influences of the gyroscopic effect, material, ply angle, stacking sequence, and taper ratio on chatter stability are also discussed.
Funder
National Natural Science Foundation of China
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献