Computational Evaluation of the Inhibition Efficacies of HIV Antivirals on SARS-CoV-2 (COVID-19) Protease and Identification of 3D Pharmacophore and Hit Compounds

Author:

Raphael Vinod P.1ORCID,Shanmughan Shaju K.1

Affiliation:

1. Department of Chemistry, Government Engineering College, Thrissur, Kerala, 680009, India

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the novel coronavirus behind the fast-spreading coronavirus disease 2019 (COVID-19). Pharmaceutical researchers are currently researching medications or preventive vaccines that may be used to treat and combat the spread of COVID-19. Health practitioners all over the world are treating patients with currently available antiviral drugs, primarily the protease inhibitors used for HIV treatment. The present study mainly aims to evaluate the potencies of eight anti-HIV drugs to inhibit coronavirus protease using in silico methods. Derivation of pharmacophore, identification of hit molecules, and checking their virtual inhibition efficacies on the COVID-19 protease were also carried out in the present investigation. Classification of eight drug molecules (atazanavir, darunavir, fosamprenavir (amprenavir—metabolised product), saquinavir, lopinavir, ritonavir, nelfinavir, and indinavir) based on their molecular structures was completed and reported. The X-ray crystallographic structure of the main protease of coronavirus (SARS-CoV-2 protease) was obtained from the Protein Data Bank and prepared for computational studies using Edu PyMOL software. Docking studies were performed with AutoDock Vina software, and the results were evaluated with Discovery Studio software. The binding scores of the drugs on protease followed the order saquinavir > nelfinavir > lopinavir = indinavir > darunavir > amprenavir > ritonavir > atazanavir. Web servers such as PharmaGist and ZINCPharmer were employed to derive the 3D pharmacophore and to identify potential hit compounds, respectively. The identified hit molecules were docked with the SARS-CoV-2 protease and analysed. A detailed account of the type of interaction between the protease and the molecules is discussed. The majority of hit compounds displayed appreciable binding affinities on coronavirus protease. Three hit compounds possess structures similar to that of natural products, viz., flavonoids, and nucleoside. These molecules were hydrophilic and slightly deviated from Lipinski parameters. All other derived molecules obeyed the Lipinski rule. In vitro, in vivo, and toxicological studies of these compounds have to be performed before checking the actual druggability of these compounds.

Publisher

Hindawi Limited

Subject

Pharmacology (medical),Organic Chemistry,General Pharmacology, Toxicology and Pharmaceutics,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3