The Vibrational Spectroscopy of the Valence Bonds of Cu-Doped TiO2 Using Electronegativity Principle Quantitative Calculations

Author:

Yan Ji-Kang1ORCID,Chen Jun-Yu1ORCID,Gan Guo-You1

Affiliation:

1. Kunming University of Science and Technology, Kunming, China

Abstract

The purpose of this study is to investigate the influence of Cu on TiO2 phase transformation and regioselectivity. TiO2 samples doped with different amounts of Cu2+ ions were synthesized by the sol-gel method. The phase and vibrational mode were characterized by X-ray diffraction (XRD), Fourier infrared spectroscopy (FTIR), and transmission electron microscope (TEM). The XRD phase analysis shows that the lattice parameters have not changed after Cu incorporation. In addition, the content of rutile increased obviously after Cu doping. This indicated that the addition of Cu obviously promoted the transformation from anatase phase to rutile phase. The vibration frequencies were calculated based on the principle of electronegativity. All types of bonds were qualitatively and quantitatively analyzed. The content of TiA-O, TiR-O, and H-O in the undoped TiO2 samples is 23.87%, 16.30%, and 7.41%, respectively. In the same way, the content of TiA-O, TiR-O, H-O, Cu A i -O, and Cu R i -O in the 2.5 mol%Cu-doped TiO2 samples is 21.23%, 18.56%, 7.34%, and 0.98%, respectively. For the 5 mol%Cu-doped TiO2 samples, the content of TiA-O, TiR-O, H-O, Cu A i -O, Cu R i -O, Cu A s -O, and Cu R s -O is 18.75%, 20.11%, 7.47%, 2.56%, 3.9%, 1.55%, and 2.35%, respectively. Cu was not present at substitutional sites in the 2.5 mol% doped sample, but Cu was present in the 2.5 mol% doped sample. It is indicated that Cu was more likely to exist in the form of interstitial position in the TiO2 lattice, with the number of Cu atoms in the interstitial position reaching saturation, and this forced Cu to replace Ti. The TEM shows that the stripes of different periods and orientations overlapped each other to form the Moiré patterns. In addition, the diffraction patterns of the Moiré image were slightly different from that of the matrix. The Cu replaced Ti position and the Cu atoms mixed into interstitial sites in the TiO2 lattice. The theoretical calculation was consistent with the experimental results.

Funder

Special Projects for Major Plans of Yunnan Province

Publisher

Hindawi Limited

Subject

Spectroscopy,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3