An Efficient ECG Denoising Method Based on Empirical Mode Decomposition, Sample Entropy, and Improved Threshold Function

Author:

Zhang Dengyong12ORCID,Wang Shanshan12,Li Feng12,Tian Shang12ORCID,Wang Jin12,Ding Xiangling3,Gong Rongrong4

Affiliation:

1. College of Computer and Communication Engineering, Changsha University of Science and Technology, 410114, China

2. Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation, Changsha University of Science and Technology, Changsha, 410114 Hunan, China

3. School of Computer Science and Engineering, Hunan University of Science and Technology, Xiangtan 411004, China

4. Changsha Social Work College, Changsha 410004, China

Abstract

The electrocardiogram (ECG) signal can easily be affected by various types of noises while being recorded, which decreases the accuracy of subsequent diagnosis. Therefore, the efficient denoising of ECG signals has become an important research topic. In the paper, we proposed an efficient ECG denoising approach based on empirical mode decomposition (EMD), sample entropy, and improved threshold function. This method can better remove the noise of ECG signals and provide better diagnosis service for the computer-based automatic medical system. The proposed work includes three stages of analysis: (1) EMD is used to decompose the signal into finite intrinsic mode functions (IMFs), and according to the sample entropy of each order of IMF following EMD, the order of IMFs denoised is determined; (2) the new threshold function is adopted to denoise these IMFs after the order of IMFs denoised is determined; and (3) the signal is reconstructed and smoothed. The proposed method solves the shortcoming of discarding the first-order IMF directly in traditional EMD denoising and proposes a new threshold denoising function to improve the traditional soft and hard threshold functions. We further conduct simulation experiments of ECG signals from the MIT-BIH database, in which three types of noise are simulated: white Gaussian noise, electromyogram (EMG), and power line interference. The experimental results show that the proposed method is robust to a variety of noise types. Moreover, we analyze the effectiveness of the proposed method under different input SNR with reference to improving SNR ( SNR imp ) and mean square error ( MSE ), then compare the denoising algorithm proposed in this paper with previous ECG signal denoising techniques. The results demonstrate that the proposed method has a higher SNR imp and a lower MSE . Qualitative and quantitative studies demonstrate that the proposed algorithm is a good ECG signal denoising method.

Funder

Changsha University of Science and Technology

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Information Systems

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3