Multilane Spatiotemporal Trajectory Optimization Method (MSTTOM) for Connected Vehicles

Author:

Wang Pangwei1ORCID,Wang Yunfeng1ORCID,Deng Hui1ORCID,Zhang Mingfang1ORCID,Zhang Juan2ORCID

Affiliation:

1. Beijing Key Lab of Urban Intelligent Traffic Control Technology, North China University of Technology, Beijing 100144, China

2. College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, Exeter, UK

Abstract

It is agreed that connected vehicle technologies have broad implications to traffic management systems. In order to alleviate urban congestion and improve road capacity, this paper proposes a multilane spatiotemporal trajectory optimization method (MSTTOM) to reach full potential of connected vehicles by considering vehicular safety, traffic capacity, fuel efficiency, and driver comfort. In this MSTTOM, the dynamic characteristics of connected vehicles, the vehicular state vector, the optimized objective function, and the constraints are formulated. The method for solving the trajectory problem is optimized based on Pontryagin’s maximum principle and reinforcement learning (RL). A typical scenario of intersection with a one-way 4-lane section is measured, and the data within 24 hours are collected for tests. The results demonstrate that the proposed method can optimize the traffic flow by enhancing vehicle fuel efficiency by 32% and reducing pollutants emissions by 17% compared with the advanced glidepath prototype application (GPPA) scheme.

Funder

National Key R&D Program of China

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3