Investigation of Multistage Hydraulic Fracture Optimization Design Methods in Horizontal Shale Oil Wells in the Ordos Basin

Author:

Fu Suotang12,Yu Jian3,Zhang Kuangsheng12,Liu Hanbin12,Ma Bing12ORCID,Su Yuliang4

Affiliation:

1. CNPC Changqing Oilfield, Xi’an Shaanxi, 710018, China

2. State Key Laboratory for Exploration and Development of Low Permeability Oil & Gas Fields, Xi’an Shaanxi, 710018, China

3. CNPC Changqing Oilfield Exploration Institute, Xi’an Shaanxi, 710018, China

4. School of Petroleum Engineering, China University of Petroleum (East China), No. 66, Changjiang West Road, Huangdao District, Qingdao, 266580, China

Abstract

Based on the analysis of the typical Ordos well groups, this study began with the accurate characterization of the fracture geometry by adopting advanced laboratory experiment methods and monitoring techniques. Then, with the integration of fracture geometry characterization and in situ stress distributions, fracture optimizations of the target wells were performed through numerical simulations methods. Finally, this study established a sweet spot prediction and identification method for long horizontal shale oil wells and constructed a set of optimization design methods for multistage hydraulic fracturing. This investigation revealed that the hydraulic fractures in Chang-7 terrestrial shale oil reservoirs exhibited the belt pattern, and the primary fractures generated the secondary fractures, which activated the natural fractures and induced shear failure. Macroscopic fractures were found to be perpendicular to the direction of the minimum principal stress. Secondary fractures and activated natural fractures were distributed around the primary fracture in the form of fracture types I and II. Multicluster perforation optimization techniques, which were based on shale reservoir classification and evaluation, and aimed at activating multiclusters and determining fracture sweet spots, were developed. These were successfully applied to the field operation and achieved production enhancement performance.

Funder

Tight Oil Accumulation, Exploration and Development

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3