Self-Controllable Mobile App Protection Scheme Based on Binary Code Splitting

Author:

Kim Sungtae1,Park Taeyong1,Jeon Geochang2,Yi Jeong Hyun2ORCID

Affiliation:

1. School of Computer Science and Engineering, Soongsil University, Seoul 06978, Republic of Korea

2. School of Software, Soongsil University, Seoul 06978, Republic of Korea

Abstract

Mobile apps are booming with the expansion of mobile devices such as smartphones, tablet PCs, smartwatches, and IoT devices. As the capabilities of mobile apps and the types of personal information required to run apps have diversified, the need for increased security has grown. In particular, Android apps are vulnerable to repackaging attacks, so various code protection techniques such as obfuscation and packing have been applied. However, apps protected with these techniques can also be disabled with static and dynamic analyses. In recent years, instead of using such application level protection techniques, a number of approaches have been adopted to monitor the behavior of apps at the platform level. However, in these cases, not only incompatibility of system software due to platform modification, but also self-control functionality cannot be provided at the user level and is very inconvenient. Therefore, in this paper we propose an app protection scheme that can split a part of the app code, store it in a separate IoT device, and self-control the split code through the partial app. In the proposed scheme, the partial app is executed only when it matches the split code stored in the IoT device. It does not require complicated encryption techniques to protect the code like the existing schemes. It also provides solutions to the parameter dependency and register reallocation issues that must be considered when implementing the proposed code splitting scheme. Finally, we present and analyze the results of experimenting the proposed scheme on real devices.

Funder

Ministry of Science, ICT and Future Planning

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3