Affiliation:
1. Software College, Northeastern University, Shenyang 110819, China
Abstract
We propose a novel feature selection algorithm for liver tissue pathological image classification. To improve the efficiency of feature selection, the same feature values of positive and negative samples are removed in rough selection. To obtain the optimal feature subset, a new heuristic search algorithm, which is called Maximum Minimum Backward Selection (MMBS), is proposed in precise selection. MMBS search strategy has the following advantages. (1) For the deficiency of Discernibility of Feature Subsets (DFS) evaluation criteria, which makes the class of small samples invalid for unbalanced samples, the Weighted Discernibility of Feature Subsets (WDFS) evaluation criteria are proposed as the evaluation strategy of MMBS, which is also available for unbalanced samples. (2) For the deficiency of Sequential Forward Selection (SFS) and Sequential Backward Selection (SBS), which can only add or only delete feature, MMBS decides whether to add the feature to feature subset according to WDFS criteria for each feature firstly; then it decides whether to remove the feature from feature subset according to SBS algorithm. In this way, the better feature subset can be obtained. The experiment results show that the proposed hybrid feature selection algorithm has good classification performance for liver tissue pathological image.
Funder
National Natural Science Foundation of China
Subject
Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献