Allocation of Optimal PMUs for Power System Observability Using PROMETHEE Approach

Author:

Kundu Shubhrajyoti1ORCID,Alam Mehebub1ORCID,Saha Roy Biman K.1ORCID,Thakur Siddhartha Sankar1ORCID

Affiliation:

1. Department of EE, NIT, Durgapur, India

Abstract

Phasor measurement units (PMUs) are becoming a vital measurement device in wide-area monitoring, operation, and control. The allocation of PMU at each bus will make that bus directly observable. However, considering the high installation costs, it is not feasible to place PMU at each bus. Thus, placing the PMUs at optimal locations is extremely important. In this study, the Preference Ranking Organization Method for Enrichment of Evaluation (PROMETHEE)-based multi-criteria decision-making (MCDM) technique has been applied for the optimal allocation of phasor measurement units (PMUs) with the aim of achieving full system observability. Along with the entire network observability, the proposed approach provides maximum measurement redundancy (MR) too. Unlike some previous popular MCDM techniques, the proposed approach obtains optimal PMU placement (OPP) solution without performing pruning operations. Different criterion has been formulated to construct a decision matrix (DM). This DM helps in calculating the net outranking flow (NOF) of all the buses during the PROMETHEE approach. Based on the maximum NOF value, the PMUs are placed at those buses. The proposed approach also considers the inclusion of zero injection buses (ZIBs). Further, cases such as single PMU outage and existence of conventional measurements have been considered while determining optimal locations of PMUs. The proposed algorithm is demonstrated on IEEE 14-bus, 30-bus, 57-bus, and 118-bus systems, one Indian practical utility, i.e., Northern Regional Power Grid (NRPG) 246-bus system, and larger Polish 2383-bus system. To prove the effectiveness of the proposed algorithm, it has been compared with some of the popular existing techniques.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Energy Engineering and Power Technology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3