Texture Synthesizability Assessment via Deep Siamese-Type Network

Author:

Hao Chuanyan1ORCID,Yang Zhi-Xin2ORCID,He Liping1,Wu Weimin1

Affiliation:

1. School of Education Science and Technology, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

2. State Key Laboratory of Internet of Things for Smart City, Department of Electromechanical Engineering, University of Macau, Macao, China

Abstract

Example-based texture synthesis plays a significant role in many fields, including computer graphics, computer vision, multimedia, and image and video editing and processing. However, it is not easy for all textures to synthesize high-quality outputs of any size from a small input example. Hence, the assessment of the synthesizability of the example textures deserves more attention. Inspired by the broad studies in image quality assessment, we propose a texture synthesizability assessment approach based on a deep Siamese-type network. To our best knowledge, this is the first attempt to evaluate the synthesizability of sample textures through end-to-end training. We first train a Siamese-type network to compare the example texture and the synthesized texture in terms of their similarity and then transfer the experience knowledge obtained in the Siamese-type network to a traditional CNN by fine-tuning, so that to give an absolute score to a single example texture, representing its synthesizability. Not relying on laborious human selection and annotation, these synthesized textures can be generated automatically by example-based synthesis algorithms. We demonstrate that our approach is completely data-driven without hand-crafted features and/or prior knowledge in the field of expertise. Experiments show that our approach improves the accuracy of texture synthesizability assessment qualitatively and quantitatively and outperforms the manual feature-based method.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Computer Networks and Communications,Information Systems

Reference43 articles.

1. Synthesized texture quality assessment via multi-scale spatial and statistical texture attributes of image and gradient magnitude coefficients;S. A. Golestaneh

2. Texture synthesis quality assessment using perceptual texture similarity

3. The Synthesizability of Texture Examples

4. Learning the Synthesizability of Dynamic Texture Samples

5. Improving semantic analysis on point clouds via auxiliary supervision of local geometric priors;L. L. Tang;IEEE Transactions on Cybernetics,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3