A Direct Ghost Fluid Method for Modeling Explosive Gas and Water Flows

Author:

Si Nan1ORCID,Park Jinwon2ORCID,Brown Alan J.1ORCID

Affiliation:

1. Department of Aerospace and Ocean Engineering, Virginia Tech, Blacksburg, VA, USA

2. Principal Researcher, R&D Institute of Daewoo Shipbuilding and Marine Engineering Co., Ltd., Seoul, Republic of Korea

Abstract

This work presents a Direct Ghost Fluid Method (DGFM) as part of a two-fluid numerical framework suitable to model explosive gas and water flows resulting from underwater explosion (UNDEX). Due to the presence of explosive gas and water with shock waves in the modeling domain, classic Eulerian methods with inherent diffusion may not be effective. Numerical diffusion occurs due to nonphysical diffused density at material interfaces, which creates spurious pressure oscillations and significantly degrades the quality of the numerical results. To eliminate or minimize numerical diffusion, sharp interface methods having no mixed elements may be used in multifluid flow computations. The Direct Ghost Fluid Method (DGFM) described in this paper uses direct extrapolation of density (vice pressure) and tangential velocity from real to ghost fluid. The spurious pressure oscillations near the material interface are therefore minimized. One-, two-, and three-dimensional computational fluid dynamics (CFD) solvers that have DGFM as an essential part in their framework to model UNDEX interface conditions are developed, explored, and applied to the simulation of a series of benchmark problems. Excellent agreement is obtained among the simulations, the analytical solutions, and the experiments.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3