Affiliation:
1. Department of Computational and Data Sciences, George Mason University, Fairfax 22030, VA, USA
Abstract
While most masks have a limited effect on personal protection, how effective are they for collective protection? How to enlighten the design of masks from the perspective of collective dynamics? In this paper, we assume three preferences in the population: (i) never wearing a mask; (ii) wearing a mask if and only if infected; (iii) always wearing a mask. We study the epidemic transmission in an open system within the Susceptible-Infected-Recovered (SIR) model framework. We use agent-based Monte Carlo simulation and mean-field differential equations to investigate the model, respectively. Ternary heat maps show that wearing masks is always beneficial in curbing the spread of the epidemic. Based on the model, we investigate the potential implications of different mask designs from the perspective of collective dynamics. The results show that strengthening the filterability of the mask from the face to the outside is more effective in most parameter spaces because it acts on individuals with both preferences (ii) and (iii). However, when the fraction of individuals always wearing a mask achieves a critical point, strengthening the filterability from outside to the face becomes more effective because of the emerging hidden reality that the infected individuals become too few to utilize the filterability from their face to outside fully.
Subject
Multidisciplinary,General Computer Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献