Sorption and Environmental Risks of Phosphorus in Subtropical Forest Soils

Author:

Liang Jianhong123ORCID,Chen Liuhuan14,Liu Ding14,Yi Chenxu14,Zhu Jing14ORCID

Affiliation:

1. Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, Guilin 541006, China

2. Institute of Karst Geology, Chinese Academy of Geological Sciences/Key Laboratory of Karst Dynamics, MNR&GZAR, Guilin 541004, China

3. International Research Centre on Karst, Under the Auspices of UNESCO, Guilin 541004, China

4. College of Environment and Resources, Guangxi Normal University, Guilin 541006, China

Abstract

Phosphorus (P) is one of the key limiting factors for the growth of forests and their net primary productivity in subtropical forest ecosystems. Phosphorus leaching of the forest soil to the catchment and groundwater in karst region is the main source of water eutrophication. Strong P sorption capacity of minerals is generally assumed to be a key driver of P leaching in subtropical ecosystems which varies among different soil types. Here, we estimated P adsorption capacity of the O/A and AB horizon in both limestone soil and red soil of subtropical forests by fitting the Langmuir and Freundlich isotherm to investigate the potential environmental risks of P. The maximum P sorption capacity ( Q m ), P sorption constant ( K L ), P sorption index (PSI), degree of P saturation (DPS), and maximum buffer capacity (MBC) were calculated. The results indicate that Q m of the O/A horizon in both soils were similar. Comparing these two soils, the red soil had a higher K L and MBC in the AB horizon; Q m of limestone soil was larger but K L was lower, indicating that the adsorption capacity of limestone soil was weaker and MBC was lower. There was no significant difference in PSI between the two soils. The DPS values of both soils were below 1.1%, indicating that P saturation is low in both subtropical forest soils due to the lack of marked anthropogenic disturbance. In the O/A horizon, P saturation associated with available P (DPSM3 and DPSOlsen) and that associated with P in the Fe-Al bound state (DPScitrate) were higher in the red soil than in the limestone soil. DPS did not differ significantly in the AB horizon, except for higher DPSM3 and DPScitrate in the red soil. The findings highlight the influence of the soil types on P adsorption. The P adsorption and buffering of red soils were higher than those of limestone soils, indicating a lower risk of P leaching in red subtropical forest soils.

Funder

Hundred Overseas Talents Introduction Plan of Colleges and Universities in Guangxi

Publisher

Hindawi Limited

Subject

Surfaces and Interfaces,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3