Study on Parameter Optimization and Mechanism of Rigid-Flexible Coupling Underground Engineering Structure of Steel Panel and Polymer

Author:

Hu Dengping1,Wang Chunyan2,Luo Zhe3ORCID,Chu Xuanxuan4ORCID

Affiliation:

1. School of Civil Engineering, Guangzhou University, Guangzhou 510006, China

2. China MCC20 Group Co., Ltd., Shanghai 201900, China

3. College of Intelligent Manufacturing, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, China

4. Nottingham Transportation Engineering Centre, Faculty of Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, UK

Abstract

Polymer grouting is carried out between the steel panel and surrounding soil in underground engineering, and the polymer material consists of isocyanates and polyols. The isocyanate/polyol composite slurry expands rapidly due to chemical reaction and solidifies immediately. Then, a dense impermeable polymer layer is formed after rapid expansion of isocyanate and polyol, which is widely used for ground reinforcement and foundation remediation. Thus, a steel panel-polymer composite structure is developed. Mechanical properties of the steel panel-polymer structure are studied. The results show that the steel panel-polymer structure exhibited excellent mechanical properties. The steel panel and polymer layer should be designed above 3 mm and 10 mm in thickness, respectively. The steel panel showed superior mechanical properties to those of polymer layers. Considering good rigidity of the steel panel and good flexibility of the polymer layer, the steel panel and polymer layer presented perfect interfacial contact. It is concluded that the mechanical properties of the whole structure were increasingly enhanced with the increase of the steel panel thickness and the structural flexibility increased with the thickness of the polymer layer. Besides, the combination of the steel panel and polymer layer could also improve the mechanical properties of this coupling structure. This study provided an initial attempt for investigating the feasibility of applying polyurethane foam to steel panels in underground engineering. The stress analysis along the grouting direction inside the prefabricated wall was conducted. It may lay the foundation for further application of polymer grouting in underground engineering.

Funder

Guangzhou Postdoctoral Research Project

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3