Quad-Band Bowtie Antenna Design for Wireless Communication System Using an Accurate Equivalent Circuit Model

Author:

Moulay Mohammed1,Abri Mehadji1,Abri Badaoui Hadjira2

Affiliation:

1. Telecommunications Laboratory, University of Tlemcen, Tlemcen, Algeria

2. STIC Laboratory, Faculty of Technology, University of Tlemcen, Tlemcen, Algeria

Abstract

A novel configuration of quad-band bowtie antenna suitable for wireless application is proposed based on accurate equivalent circuit model. The simple configuration and low profile nature of the proposed antenna lead to easy multifrequency operation. The proposed antenna is designed to satisfy specific bandwidth specifications for current communication systems including the Bluetooth (frequency range 2.4–2.485 GHz) and bands of the Unlicensed National Information Infrastructure (U-NII) low band (frequency range 5.15–5.35 GHz) and U-NII mid band (frequency range 5.47–5.725 GHz) and used for mobile WiMAX (frequency range 3.3–3.6 GHz). To validate the proposed equivalent circuit model, the simulation results are compared with those obtained by the moments method of Momentum software, the finite integration technique of CST Microwave studio, and the finite element method of HFSS software. An excellent agreement is achieved for all the designed antennas. The analysis of the simulated results confirms the successful design of quad-band bowtie antenna.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Condensed Matter Physics,Radiation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fabrication and measurement of bowtie antenna on gas insulated switchgear at the voltage 10 kV and 20 kV;PROCEEDINGS OF THE 9TH INTERNATIONAL SYMPOSIUM ON INNOVATIVE BIOPRODUCTION INDONESIA ON BIOTECHNOLOGY AND BIOENGINEERING 2022: Strengthening Bioeconomy through Applied Biotechnology, Bioengineering, and Biodiversity;2023

2. Genetically Optimized Quad-Band mm-Wave Microstrip Patch Antenna;Lecture Notes in Electrical Engineering;2023

3. Circuit Modelling of Broadband Antenna Using Vector Fitting and Foster Form Approaches for IoT Applications;Electronics;2022-11-14

4. A Centrosymmetric Triple-Tail Bow-Tie Antenna for Ground Penetration Radar;2021 IEEE Asia-Pacific Microwave Conference (APMC);2021-11-28

5. A new C and Ku-band logarithmically periodic linear bowtie antennas array design using lumped-element equivalent schematic model;AEU - International Journal of Electronics and Communications;2015-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3