Cathodo-, Thermo-, and Photoluminescent Properties of Nano-Y2O3:Eu3+Fabricated by Controlled Combustion Synthesis

Author:

Anh Tran Kim1,Chau Pham Thi Minh1,Hai Nguyen Thi Quy1,Minh Le Quoc12

Affiliation:

1. Institute for Research and Development of High Technology, Duy Tan University, K7/25 Quang Trung, Hai Chau, Da Nang, Vietnam

2. Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi, Vietnam

Abstract

Y2O3:Eu3+nanophosphors were prepared through combustion reaction under controlled condition of the fuel ethylenediaminetetraacetic acid (EDTA-Na2) and in the temperature range from 350 to 700°C. The products were characterized by X-ray diffraction (XRD), field emission scattering electron microscopy (FESEM), and energy dispersive spectroscopy (EDS). The results showed that Y2O3:Eu3+nanoparticles were successfully synthesized by combustion method at low temperature and in short reaction time. The light-emitting ability of Y2O3:Eu3+nanoparticles upon the electron excitation has been studied at the potentials 5, 10, and 15 kV. The thermoluminescent glow curves have elucidated an intense peak at 117°C after UV exposure and at least two peaks at 125 and 336°C with Gamma irradiation. Photoluminescent spectra of Y2O3:Eu3+nanoparticles exhibited strong red luminescent color with highest sharp band at 612 nm under excitation in ultraviolet at 254, 394 and in visible at 465 nm. The dependence of photoluminescent properties of Y2O3:Eu3+nanoparticles on annealing temperature and concentration of Eu3+was also studied.

Publisher

Hindawi Limited

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3