A Multiantenna Spectrum Sensing Method Based on HFDE‐CNN‐GRU under Non‐Gaussian Noise

Author:

Li SuopingORCID,Han YuzhouORCID,Gaber JaafarORCID,Yang Qian

Abstract

In many practical communication environments, traditional feature extraction methods in spectrum sensing fail to fully exploit the information of primary users. Additionally, conventional machine learning methods have weak learning capabilities, making it difficult to maintain efficient and stable spectrum sensing performance in complex noise environments. Furthermore, non‐Gaussian noise can significantly affect the detection performance of spectrum sensing. To address these issues, this paper first proposes a feature extraction method based on Hierarchical Fuzzy Dispersion Entropy (HFDE) to better extract high‐frequency and low‐frequency information from signal samples, providing more comprehensive features for subsequent models to optimize feature extraction effectiveness. Then, a parallel model combining Convolutional Neural Networks (CNN) with Gated Recurrent Units (GRU) is constructed to enhance learning ability. While CNN extracts local features, GRU processes temporal relationships, and the features output by both are concatenated to achieve effective feature learning and temporal modeling of primary user signal data represented by HFDE. Finally, using the feature vectors output by the CNN‐GRU model, detection statistics and detection thresholds for spectrum sensing are constructed for online detection. Simulation results validate the effectiveness and robustness of this method in spectrum sensing under non‐Gaussian noise. In the presence of significant non‐Gaussian noise intensity and a signal‐to‐noise ratio of −14 dB, the detection probability can reach 97.1%. Additionally, for the detection of unknown signals, the model can still maintain a detection probability of over 90%.

Funder

National Natural Science Foundation of China

Lanzhou University of Technology

European Commission

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3