Tracking Vehicle Cruising in an Open Parking Lot Using Deep Learning and Kalman Filter

Author:

Paidi Vijay1ORCID,Fleyeh Hasan1ORCID,Håkansson Johan1ORCID,Nyberg Roger G.1ORCID

Affiliation:

1. Dalarna University, Faculty of Data & Information Sciences, Borlänge, Sweden

Abstract

Due to the lack of wide availability of parking assisting applications, vehicles tend to cruise more than necessary to find an empty parking space. This problem is evident globally and the intensity of the problem varies based on the demand of parking spaces. It is a well-known hypothesis that the amount of cruising by a vehicle is dependent on the availability of parking spaces. However, the amount of cruising that takes place in search of parking spaces within a parking lot is not researched. This lack of research can be due to privacy and illumination concerns with suitable sensors like visual cameras. The use of thermal cameras offers an alternative to avoid privacy and illumination problems. Therefore, this paper aims to develop and demonstrate a methodology to detect and track the cruising patterns of multiple moving vehicles in an open parking lot. The vehicle is detected using Yolov3, modified Yolo, and custom Yolo deep learning architectures. The detected vehicles are tracked using Kalman filter and the trajectory of multiple vehicles is calculated on an image. The accuracy of modified Yolo achieved a positive detection rate of 91% while custom Yolo and Yolov3 achieved 83% and 75%, respectively. The performance of Kalman filter is dependent on the efficiency of the detector and the utilized Kalman filter facilitates maintaining data association during moving, stationary, and missed detection. Therefore, the use of deep learning algorithms and Kalman filter facilitates detecting and tracking multiple vehicles in an open parking lot.

Publisher

Hindawi Limited

Subject

Strategy and Management,Computer Science Applications,Mechanical Engineering,Economics and Econometrics,Automotive Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3