A Proposed Technique Using Machine Learning for the Prediction of Diabetes Disease through a Mobile App

Author:

El-Sofany Hosam12ORCID,El-Seoud Samir A.3ORCID,Karam Omar H.3ORCID,Abd El-Latif Yasser M.4ORCID,Taj-Eddin Islam A. T. F.5ORCID

Affiliation:

1. College of Computer Science, King Khalid University, Abha, Saudi Arabia

2. Cairo Higher Institute for Engineering, Computer Science and Management, Cairo, Egypt

3. British University in Egypt- BUE, Faculty of Informatics and Computer Science, Cairo, Egypt

4. Faculty of Science, Ain Shams University, Cairo, Egypt

5. Faculty of Computers and Information, Assiut University, Assiut, Egypt

Abstract

With the increasing prevalence of diabetes in Saudi Arabia, there is a critical need for early detection and prediction of the disease to prevent long-term health complications. This study addresses this need by using machine learning (ML) techniques applied to the Pima Indians dataset and private diabetes datasets through the implementation of a computerized system for predicting diabetes. In contrast to prior research, this study employs a semisupervised model combined with strong gradient boosting, effectively predicting diabetes-related features of the dataset. Additionally, the researchers employ the SMOTE technique to deal with the problem of imbalanced classes. Ten ML classification techniques, including logistic regression, random forest, KNN, decision tree, bagging, AdaBoost, XGBoost, voting, SVM, and Naive Bayes, are evaluated to determine the algorithm that produces the most accurate diabetes prediction. The proposed approach has achieved impressive performance. For the private dataset, the XGBoost algorithm with SMOTE achieved an accuracy of 97.4%, an F1 coefficient of 0.95, and an AUC of 0.87. For the combined datasets, it achieved an accuracy of 83.1%, an F1 coefficient of 0.76, and an AUC of 0.85. To understand how the model predicts the final results, an explainable AI technique using SHAP methods is implemented. Furthermore, the study demonstrates the adaptability of the proposed system by applying a domain adaptation method. To further enhance accessibility, a mobile app has been developed for instant diabetes prediction based on user-entered features. This study contributes novel insights and techniques to the field of ML-based diabetic prediction, potentially aiding in the early detection and management of diabetes in Saudi Arabia.

Funder

King Khalid University

Publisher

Hindawi Limited

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multifunctional Pre-processing Approach for Diabetes Mellitus Prediction Using Ensemble Learning;2024 3rd International Conference on Artificial Intelligence For Internet of Things (AIIoT);2024-05-03

2. An Effective Feature Selection for Type II Diabetes Prediction;2024 10th International Conference on Web Research (ICWR);2024-04-24

3. Predicting Heart Diseases Using Machine Learning and Different Data Classification Techniques;IEEE Access;2024

4. Machine Learning-Based Monitoring and Prognosis of Chronic Kidney Disease Patients;2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI);2023-12-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3