Identification of a Five Immune Term Signature for Prognosis and Therapy Options (Immunotherapy versus Targeted Therapy) for Patients with Hepatocellular Carcinoma

Author:

Bin Xiaoyun1,Luo Zongjiang2,Wang Jianchu2ORCID,Zhou Sufang13ORCID

Affiliation:

1. Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Guangxi Medical University, Nanning, Guangxi 530021, China

2. Department of Hepatobiliary Surgery, Affiliated Hospital of Youjiang Medical University for Nationalities, Guangxi 533000, China

3. Key Laboratory of Longevity and Aging-Related Diseases of Chinese Ministry of Education, Center for Translational Medicine, Guangxi Medical University, Nanning, Guangxi, China

Abstract

Background. Immune microenvironment implicated in liver cancer development. Nevertheless, previous studies have not fully investigated the immune microenvironment in liver cancer. Methods. The open-access data used for analysis were obtained from The Cancer Genome Atlas (TCGA-LIHC) and the International Cancer Genome Consortium databases (ICGC-JP and ICGC-FR). R program was employed to analyze all the data statistically. Results. First, the TCGA-LIHC, ICGC-FR, and ICGC-JP cohorts were selected for our analysis, which were merged into a combined cohort. Then, we quantified 53 immune terms in this combined cohort with large populations using the ssGSEA algorithm. Next, a prognostic approach was established based on five immune principles (CORE.SERUM.RESPONSE.UP, angiogenesis, CD8.T.cells, Th2.cells, and B.cells) was established, which showed great prognostic prediction efficiency. Clinical correlation analysis demonstrated that high-risk patients could reveal higher progressive clinical features. Next, to examine the inherent biological variations in high- and low-risk patients, pathway enrichment tests were conducted. DNA repair, E2F targets, G2M checkpoints, HEDGEHOG signaling, mTORC1 signaling, and MYC target were positively correlated with the risk score. Examination of genomic instability revealed that high-risk patients may exhibit a higher tumor mutation burden score. Meanwhile, the risk score showed a strong positive correlation with the tumor stemness index. In addition, the Tumor Immune Dysfunction and Exclusion outcome indicated that high-risk patients could be higher responsive to immunotherapy, whereas low-risk patients may be higher responsive to Erlotinib. Finally, six characteristic genes DEPDC1, DEPDC1B, NGFR, CALCRL, PRR11, and TRIP13 were identified for risk group prediction. Conclusions. In summary, our study identified a signature as a useful tool to indicate prognosis and therapy options for liver cancer patients.

Publisher

Hindawi Limited

Subject

Applied Mathematics,General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,Modeling and Simulation,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3