Progress of Metal Oxide (Sulfide)-Based Photocatalytic Materials for Reducing Nitrogen to Ammonia

Author:

Yang Jianjun12ORCID

Affiliation:

1. Department of Chemical Engineering, School of Environment Science and Engineering, Chang’an University, Xi’an 710054, China

2. Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang’an University, Ministry of Education, Xi’an 710054, China

Abstract

The Haber–Bosch process has been an important approach to produce ammonia for meeting the food need of increasing population and the worldwide need of nitrogenous fertilizers since 1913. However, the traditional ammonia production process is a high energy-consumption process, which usually produces 1 metric ton ammonia with releasing around 1.9 metric tons CO2. Photocatalytic ammonia synthesis under solar light as energy source, an attractive and promising alternative approach, is a very challenging target of reducing fossil energy consumption and environmental pollution. Therefore, photocatalytic ammonia production process would emerge huge opportunities by directly providing nitrogenous fertilizers in a distributed manner as needed in the agricultural fields. In this article, different metal oxide (sulfide)-based photocatalytic materials for reducing nitrogen to ammonia under ambient conditions are reviewed. This review provides insights into the most recent advancements in understanding the photocatalyst materials which are of fundamental significance to photocatalytic nitrogen reduction, including the state-of-the-art, challenges, and prospects in this research field.

Funder

China Scholarship Council

Publisher

Hindawi Limited

Subject

General Chemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3