Potential Therapeutic Mechanism of Scutellaria baicalensis Georgi against Ankylosing Spondylitis Based on a Comprehensive Pharmacological Model

Author:

Li Xu1ORCID,Liu Jian2ORCID,Fang Yanyan3ORCID,Huang Dan2ORCID,He Mingyu1ORCID,Wang Fanfan1ORCID,Han Qi1ORCID

Affiliation:

1. First School of Clinical Medicine, Anhui University of Chinese Medicine, Hefei, China

2. Department of Rheumatism Immunity, The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, China

3. Department of Clinical Data Center, The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, China

Abstract

Background. Scutellaria baicalensis Georgi (SBG) has significant anti-inflammatory and immune-modulating activities and is widely used in the treatment of inflammatory and autoimmune diseases. However, the mechanism of SBG in the treatment of ankylosing spondylitis (AS) remains to be elucidated. Methods. Differentially expressed genes (DEGs) related to AS were analyzed based on two GEO gene chips. The DEGs were merged with the data derived from OMIM, GeneCards, and PharmGKB databases to ascertain AS-related targets. Active components of SBG and their targets were acquired from the TCMSP database. After overlapping the targets of AS and SBG, the action targets were acquired. Subsequently, protein-protein interaction (PPI) network and core target screening were conducted using the STRING database and Cytoscape software. Moreover, the DAVID platform was used to perform Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses of action targets. Finally, the affinity of major active components and core targets was validated with molecular docking. Results. A total of 36 active components of SBG were acquired from TCMSP database. Among these, the main active components were baicalein, wogonin, and oroxylin A. The PPI network and screening showed TNF, IL-6, CXCL8, PTGS2, and VEGFA as core targets associated SBG against AS. GO and KEGG analyses indicated that SBG participated in various biological processes, via regulating IL-17, TNF, and NF-κB signaling pathways. Molecular docking results confirmed a strong binding activity between the main active components and the core targets. Conclusion. The therapeutic mechanism of SBG associated with AS can be characterized as a multicomponent, multitarget, and multipathway mechanism. SBG may be a promising therapeutic candidate for AS.

Funder

National Nature Fund Program

Publisher

Hindawi Limited

Subject

General Immunology and Microbiology,General Biochemistry, Genetics and Molecular Biology,General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3