Mixed Convective-Radiative Dissipative Magnetized Micropolar Nanofluid Flow over a Stretching Surface in Porous Media with Double Stratification and Chemical Reaction Effects: ADM-Padé Computation

Author:

Pattnaik P. K.1,Bhatti M. M.2ORCID,Mishra S. R.3,Abbas Munawwar Ali4,Bég O. Anwar5

Affiliation:

1. Department of Mathematics, Odisha University of Technology and Research, Bhubaneswar, Odisha 751029, India

2. College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

3. Department of Mathematics, Siksha “O” Anusandhan University, Bhubaneswar, Odisha 751030, India

4. Department of Mathematics, University of Baltistan Skardu, Gilgit-Baltistan 16100, Pakistan

5. Multi-Physical Engineering Sciences Group, Mechanical Engineering, University of Salford, Salford M5 4WT, UK

Abstract

The present study deals with the electrically conducting micropolar nanofluid flow from a vertical stretching surface adjacent to a porous medium under a transverse magnetic field. Eringen’s micropolar model is deployed for non-Newtonian characteristics and the Buongiorno nanofluid model employed for nanoscale effects (thermophoresis and Brownian motion). The model includes double stratification (thermal and solutal) and also chemical reaction effects, heat source, and viscous dissipation. Darcy’s model is employed for the porous medium and a Rosseland diffusion flux approximation for nonlinear thermal radiation. The nonlinear governing partial differential conservation equations are rendered into nonlinear ordinary differential equations via relevant transformations. An innovative semi-numerical methodology combining the Adomian decomposition method (ADM) with Padé approximants and known as ADM-Padé is deployed to solve the emerging nonlinear ordinary differential boundary value problem with appropriate wall and free stream conditions in MATLAB software. A detailed parametric study of the influence of key parameters on stream function, velocity, microrotation (angular velocity), temperature, and nanoparticle concentration profiles is conducted. Furthermore, skin friction coefficient, wall couple stress coefficient, Nusselt number, and Sherwood number are displayed in tables. The validation of both numerical techniques used, i.e., ADM and ADM-Padé, against a conventional numerical 4th order Runge–Kutta method is also included and significant acceleration in convergence of solutions achieved with the ADM-Padé approach. The flow is decelerated with greater buoyancy ratio parameter whereas microrotation (angular velocity) is enhanced. Increasing thermal and solutal stratification suppresses microrotation. Concentration magnitudes are boosted with greater chemical reaction parameter and Lewis number. Temperatures are significantly enhanced with radiative parameter. Increasing Brownian motion parameter depletes concentration values. The study finds applications in thermomagnetic coating processes involving nanomaterials with microstructural characteristics.

Publisher

Hindawi Limited

Subject

General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3