Semantic Association and Decision-Making for the Internet of Things Based on Partial Differential Fuzzy Unsupervised Models

Author:

Liu Wansu1ORCID,Lu Biao1ORCID

Affiliation:

1. Information Engineering Department, Suzhou University, Suzhou 234000, China

Abstract

This study presents an in-depth study and analysis of IoT semantic association and decision-making using a partial differential fuzzy unsupervised approach. It focuses on a semantic annotation framework for device metadata and a knowledge base construction method to further improve the interoperability of IoT domain knowledge by building a unified IoT domain knowledge base and designing and implementing a semantic IoT knowledge management and application generation system. The main proposal is an IoT generic domain ontology, which reuses the existing excellent ontologies of IoT as much as possible, extracts the commonly used concepts of the domain and combines them, and provides a unified semantic template for IoT applications. On the other hand, by applying the entity linking technique to the extension of the knowledge base and linking the structured metadata of devices to the corresponding entities of the background knowledge base, the domain knowledge base can be made to share the rich background knowledge. At the same time, the interoperability of heterogeneous IoT metadata between applications is enhanced by unifying data and concepts from different device applications to the same background knowledge base through entity alignment techniques. The semantic representation of events applicable to IoT application scenarios is investigated, and an IoT event ontology for representing abstract events and event relationships in IoT is designed; next, a domain ontology with IoT sensing and control event representation capability is constructed based on the IoT event ontology, in which the typical domain ontology (SSN) that can be used for IoT applications is followed by the ontology reuse principle is improved and extended to support the description of event types and interevent relationships, and the IoT event model is associated with the improved IoT base ontology through an ontology alignment approach. Finally, the IoT sensing and control ontology are validated by semantic modeling of device composition, component relationships, and operational processes based on the IoT sensing and control ontology.

Funder

New Engineering Pilot Project

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3