A Line Planning Approach for High-Speed Rail Networks with Time-Dependent Demand and Capacity Constraints

Author:

Su Huanyin1ORCID,Tao Wencong1,Hu Xinlei2ORCID

Affiliation:

1. School of Railway Tracks and Transportation, Wuyi University, Jiangmen, Guangdong, China

2. School of Traffic and Transportation Engineering, Central South University, Changsha, Hunan, China

Abstract

In high-speed rail networks, trains are operated with high speeds and high frequencies, which can satisfy passenger demand with different expected departure times. Given time-dependent demand, this paper proposes a line planning approach with capacity constraints for high-speed rail networks. In this paper, a bilevel optimization model is formulated and the constraints include track section capacity per unit time, train seat capacity, and the gap between the number of starting trains and that of ending trains at a station. In the upper level, the objective is to minimize train operational cost and passenger travel cost, and the decision variables include the line of each train, carriage composition of each train, train stop patterns, train start times, and train arrival and departure times at stops in the line plan. In the lower level, a schedule-based passenger assignment method, which assigns time-varying demand on trains with seat capacity constraints by simulating the ticket-booking process, is used to evaluate the line plan obtained in the upper level. A simulated annealing algorithm is developed to solve the model in which some strategies are designed to search for neighborhood solutions, including reducing train carriages, deleting trains, adding trains, increasing train carriages, and adjusting train start times. Finally, an application to the Chinese high-speed rail network is presented. The numerical results show that (i) the average time deviations between the expected departure times and the actual boarding times of passengers are within 30 min, (ii) the unserved passengers are less than 200, and (iii) the average load factors of trains are about 70%. Hence, line plan solutions meet time-dependent demand well and satisfy the capacity constraints for high-speed rail networks.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3