Peripheral Administration of NMU Promotes White Adipose Tissue Beiging and Improves Glucose Tolerance

Author:

Yuan Yue1ORCID,Wang Hongdong1ORCID,He Jielei1ORCID,Sun Haixiang1ORCID,Zhu Dalong1ORCID,Bi Yan1ORCID

Affiliation:

1. Department of Endocrinology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China

Abstract

Purpose. Targeting white adipose tissue (WAT) beiging has been proposed as an effective way to increase thermogenesis and improve glucose metabolism. Neuromedin U (NMU) is a neuropeptide that could increase energy expenditure, while its effects on WAT beiging and glucose homeostasis remain to be investigated. Methods. Male C57BL/6 mice were fed with high fat diet (HFD) to induce obesity and hyperglycemia and then treated with chronic subcutaneous injection of NMU. Body weight and food intake were recorded daily. After 14 days of injection, intraperitoneal glucose tolerance tests and 18F-fluorodeoxyglucose micro-positron emission tomography/computed tomography (18F-FDG micro-PET/CT) scans were conducted. Subcutaneous WAT (sWAT) and interscapular brown adipose tissue were collected for the evaluation of adipocyte size, expression of uncoupling protein 1 (Ucp1), and other thermogenic-related genes. Stromal vascular fraction of subcutaneous WAT was extracted for the measurement of type 2 innate lymphocytes (ILC2s) proportions. Results. Glucose tolerance was markedly improved by peripherally administered NMU. Micro-PET/CT suggested that NMU promoted WAT beiging, which was further confirmed by haematoxylin and eosin (H&E) staining and immunohistochemistry. In diet-induced-obese (DIO) mice, NMU activated thermogenic-related genes in WAT. In addition, NMU stimulated ILC2s in the stromal vascular fraction of WAT. Conclusion. Taken together, our study indicates that peripheral administration of NMU is a potential therapeutic strategy for the promotion of WAT beiging and the improvement of impaired glucose tolerance.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3