Affiliation:
1. College of Information Sciences and Technology, Hainan University, Haikou 570228, China
Abstract
This paper is concerned with the problem of finite-time boundedness for a class of delayed Markovian jumping neural networks with partly unknown transition probabilities. By introducing the appropriate stochastic Lyapunov-Krasovskii functional and the concept of stochastically finite-time stochastic boundedness for Markovian jumping neural networks, a new method is proposed to guarantee that the state trajectory remains in a bounded region of the state space over a prespecified finite-time interval. Finally, numerical examples are given to illustrate the effectiveness and reduced conservativeness of the proposed results.
Funder
Natural Science Foundation of Hainan province
Subject
Applied Mathematics,Analysis