Enhance-Net: An Approach to Boost the Performance of Deep Learning Model Based on Real-Time Medical Images

Author:

Narayan Vipul1ORCID,Mall Pawan Kumar2ORCID,Alkhayyat Ahmed3ORCID,Abhishek Kumar4ORCID,Kumar Sanjay5ORCID,Pandey Prakash6ORCID

Affiliation:

1. Galgotias University, Greater Noida, India

2. Lovely Professional University, India

3. College of Technical Engineering, The Islamic University, Najaf, Iraq

4. National Institute of Technology Patna, India

5. Rajkiya Engineering College, Azamgarh, India

6. Graduate School of Engineering, Mid-West University, Nepal

Abstract

Real-time medical image classification is a complex problem in the world. Using IoT technology in medical applications assures that the healthcare sectors improve the quality of treatment while lowering costs via automation and resource optimization. Deep learning is critical in categorizing medical images, which is accomplished by artificial intelligence. Deep learning algorithms allow radiologists and orthopaedic surgeons to make their life easier by providing them with quicker and more accurate findings in real time. Despite this, the classic deep learning technique has hit its performance limits. For these reasons, in this research, we examine alternative enhancement strategies to raise the performance of deep neural networks to provide an optimal solution known as Enhance-Net. It is possible to classify the experiment into six distinct stages. Champion-Net was chosen as a deep learning model from a pool of benchmark deep learning models (EfficientNet: B0, MobileNet, ResNet-18, and VGG-19). This stage helps choose the optimal model. In the second step, Champion-Net was tested with various resolutions. This stage helps conclude dataset resolution and improves Champion-Net performance. The next stage extracts green channel data. In the fourth step, Champion-Net combines with image enhancement algorithms CLAHE, HEF, and UM. This phase serves to improve Enhance-performance. The next stage compares the Enhance-Net findings to the lightness order error (LoE). In Enhance-Net models, the current study combines image enhancement and green channel with Champion-Net. In the final step, radiologists and orthopaedic surgeons use the trained model for real-time medical image prediction. The study effort uses the musculoskeletal radiograph-bone classification (MURA-BC) dataset. Classification accuracy of Enhance-Net was determined for the train and test datasets. These models obtained 98.02 percent, 94.79 percent, and 94.61 percent accuracy, respectively. The 96.74% accuracy was achieved during real-time testing with the unseen dataset.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

Reference54 articles.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detection and recognition of aircraft vehicle-A supple approach using deep pliable YOLOv5;Multimedia Tools and Applications;2024-06-27

2. An advanced deep neural network for fundus image analysis and enhancing diabetic retinopathy detection;Healthcare Analytics;2024-06

3. Kidney Tumor Classification on CT images using Self-supervised Learning;Computers in Biology and Medicine;2024-06

4. Enhancing Medical Image Analysis with Machine Learning and Image Processing;2024 Second International Conference on Data Science and Information System (ICDSIS);2024-05-17

5. An Innovative Machine Learning Approach in Diagnostic Imaging Using Deep Learning;2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC);2024-01-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3