Automatic Minimization of the Drift Performance of RC 3D Irregular Buildings Using Genetic Algorithm

Author:

Sadat Zakia1ORCID,Arslan Abdussamet1ORCID

Affiliation:

1. Civil Engineering Department, Gazi University, Çankaya 06570, Ankara, Turkey

Abstract

This study introduces the application of genetic algorithms for the optimal design of the seismic torsional drift performance of three-dimensional reinforced concrete buildings. Attempts have been made to achieve an optimal automatic design of the torsional drift of the storeys of reinforced concrete buildings with plan irregularities to build torsional balanced structures. The storey torsional drift response generated by static and dynamic loads can be clearly expressed in terms of vertical structure elements’ sizing design variables. Two examples are provided to demonstrate the efficiency and practicability of the proposed optimum design approach. The performance of the structures was assessed as per the procedure prescribed in modern seismic code languages. Mathematical and finite element modelling were used to perform seismic analysis on buildings. MATLAB® programming was used as a solution to the sizing optimization problem. The results confirmed the proposed genetic algorithm’s ability to find efficient optimum solutions to three-dimensional reinforced concrete structures through the problem of size optimization.

Publisher

Hindawi Limited

Subject

Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3