RAGE Regulating Vascular Remodeling in Diabetes by Regulating Mitochondrial Dynamics with JAK2/STAT3 Pathway

Author:

Sun Shengjia1,Chen Qiying1,Wu Bangwei1,Huang Qingyu1,Maimaitijiang Alimujiang1ORCID

Affiliation:

1. Department of Cardiology, Huashan Hospital Fudan University, No.12 Urumqi Middle Road, Shanghai 200040, China

Abstract

In this research, we will explore the role and modulation of mitochondrial dynamics in diabetes vascular remodeling. Only a few cell types express the pattern recognition receptor, also known as the AGE receptor (RAGE). However, it is triggered in almost all of the cells that have been investigated thus far by events that are known to cause inflammation. Here, Type 2 diabetes was studied in both cellular and animal models. Elevated Receptor for advanced glycation end products (RAGE), phosphorylated JAK2 (p-JAK2), phosphorylated STAT3 (p-STAT3), transient receptor potential ion channels (TRPM), and phosphorylated dynamin-related protein 1 (p-DRP1) were observed in the context of diabetes. In addition, we found that inhibition of RAGE was followed by a remarkable decrease in the expression of the above proteins. It has also been demonstrated by western blotting and immunofluorescence results in vivo and in vitro. Suppressing STAT3 and DRP1 phosphorylation produced effects similar to those of RAGE inhibition on the proliferation, cell cycle, migration, invasion, and expression of TRPM in VSMCs and vascular tissues obtained from diabetic animals. These findings indicate that RAGE regulates vascular remodeling via mitochondrial dynamics through modulating the JAK2/STAT3 axis in diabetes. The findings could be crucial in gaining a better understanding of diabetes-related vascular remodeling. It also contributes to a better cytopathological understanding of diabetic vascular disease and provides a theoretical foundation for novel targets that aid in the prevention and treatment of diabetes-related cardiovascular problems.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3