Affiliation:
1. Department of Mechanical Engineering, Yildiz Technical University, Istanbul, Turkey
Abstract
This paper studies the design of a linear matrix inequality (LMI) based mixedH2/H∞state-feedback controller for vibration attenuation problem of seismic-excited container cranes. In order to show effectiveness of the designed controller, a six-degree-of-freedom container crane structural system is modeled using a spring-mass-damper subsystem. The system is then simulated against the real ground motion of El Centro and Northridge earthquakes. Finally, the time history of the crane parts displacements, accelerations, control forces, and frequency responses of both uncontrolled and controlled cases are presented. Additionally, the performance of the designed controller is also compared with a nominal state-feedbackH∞controller performance. Simulations of the designed controller show better seismic performance than a nominal state-feedbackH∞controller. Simulation results show that the designed controller is all effective in reducing vibration amplitudes of crane parts.
Subject
Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献