Osimertinib Improves the Immune Microenvironment of Lung Cancer by Downregulating PD-L1 Expression of Vascular Endothelial Cells and Enhances the Antitumor Effect of Bevacizumab

Author:

Xiao Xuejun1,Wu Yang1,Shen Fang1,MuLaTiAize Yusufu1,Xinhua Nabi1ORCID

Affiliation:

1. Department of Pharmacology, Xinjiang Medical University, Urumqi 830054, China

Abstract

Objective. To investigate the effect and mechanism of osimertinib combined with bevacizumab on lung cancer through cell and transplanted tumor animal experiments and to provide theoretical basis for further clinical trials. Methods. Immunohistochemistry was used to detect the expression of PD-L1 in tumor vessels of nonmetastatic lung adenocarcinoma and metastatic lung adenocarcinoma. At the same time, the expression of CD8 and FoxP3 in tumor tissue was detected. qRT-PCR was used to detect the effect of osimertinib on PD-L1 expression in HUVECs. The expression levels of p-Akt and p-ERK in HUVECs treated with osimertinib were analyzed by Western blot. AKT was blocked by AKT specific inhibitor Ly294002 to analyze the expression of PD-L1 in HUVECs. An animal model of transplanted tumor was constructed to analyze whether osimertinib could enhance the antitumor effect of bevacizumab. Results. PD-L1 was highly expressed in vascular endothelial cells of metastatic lung cancer. FoxP3 was highly expressed in metastatic lung adenocarcinoma, while CD8 expression was low. Osimertinib inhibits PD-L1 expression in endothelial cells. Mechanism studies have shown that osimertinib inhibits PD-L1 expression in endothelial cells through the AKT/ERK pathway. Osimertinib inhibited endothelial cell PD-L1 expression, increased CD8+T cell infiltration, inhibited tumor growth, and enhanced the tumor effect of bevacizumab. Conclusion. Osimertinib can significantly increase the killing ability of bevacizumab against tumor. Osimertinib can improve the tumor microenvironment and enhance the antitumor effect of bevacizumab by reducing the expression of PD-L1 in tumor blood vessels.

Funder

Xinjiang Key Laboratory of Active Components of Natural Medicine and Drug Release Technology

Publisher

Hindawi Limited

Subject

Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3