Cell Phenotype Classification Based on Joint of Texture Information and Multilayer Feature Extraction in DenseNet

Author:

Fekri-Ershad Shervan12ORCID,Al-Imari Mustafa Jawad3ORCID,Hamad Mohammed Hayder3,Alsaffar Marwa Fadhil3,Hassan Fuad Ghazi3,Hadi Mazin Eidan3ORCID,Mahdi Karrar Salih3ORCID

Affiliation:

1. Faculty of Computer Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

2. Big Data Research Center, Najafabad Branch, Islamic Azad University, Najafabad, Iran

3. Department of Medical Laboratory Techniques, Al-Mustaqbal University College, Hillah 51001, Babylon, Iraq

Abstract

Cell phenotype classification is a critical task in many medical applications, such as protein localization, gene effect identification, and cancer diagnosis in some types. Fluorescence imaging is the most efficient tool to analyze the biological characteristics of cells. So cell phenotype classification in fluorescence microscopy images has received increased attention from scientists in the last decade. The visible structures of cells are usually different in terms of shape, texture, relationship between intensities, etc. In this scope, most of the presented approaches use one type or joint of low-level and high-level features. In this paper, a new approach is proposed based on a combination of low-level and high-level features. An improved version of local quinary patterns is used to extract low-level texture features. Also, an innovative multilayer deep feature extraction method is performed to extract high-level features from DenseNet. In this respect, an output feature map of dense blocks is entered in a separate way to pooling and flatten layers, and finally, feature vectors are concatenated. The performance of the proposed approach is evaluated on the benchmark dataset 2D-HeLa in terms of accuracy. Also, the proposed approach is compared with state-of-the-art methods in terms of classification accuracy. Comparison of results demonstrates higher performance of the proposed approach in comparison with some efficient methods.

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3