Numerical Research on a Three-Dimensional Solid Element Based on Generalized Elasticity Theory

Author:

Qiao Zhen12ORCID,Liu Zhanfang123ORCID

Affiliation:

1. College of Aerospace Engineering, Chongqing University, Chongqing 400030, China

2. Chongqing Key Laboratory of Heterogeneous Material Mechanics, Chongqing University, Chongqing, China

3. State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chonqing University, Chongqing, China

Abstract

A finite element equation is established based on generalized elasticity theory by applying a virtual work principle. Then, a penalty function term is added to the virtual work equation by imposing rotation and displacement as independent variables. An 8-node element with full integration, an 8-node element with reduced integration, and a 20-node element with full integration are constructed using difference integration schemes and shape functions. The influences of structural degrees of freedom and the penalty parameter on convergence are analyzed via the three elements. It is shown that the 8-node element with reduction integration and the 20-node element with full integration are convergent, whereas the 8-node element with full integration is divergent. The scale effects of a slender beam, a short beam, a thin plate, and a medium-thick plate are numerically analyzed. Lastly, the scale effects of the frequencies that correspond to the bending mode, torsion mode, and tension-compression mode for a pretwisted plate are studied. It is found that the frequencies that correspond to the bending mode and torsion mode exert a scale effect, whereas the frequency that corresponds to the tension-compression mode does not. The essence of the scale effect is that the rotational deformation of the microstructure is amplified.

Funder

NSAF

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3