Luteolin Induced Hippocampal Neuronal Pyroptosis Inhibition by Regulation of miR-124-3p/TNF-α/TRAF6 Axis in Mice Affected by Breast-Cancer-Related Depression

Author:

Zhu Qing12,Meng Pan1,Han Yuanshan1,Yang Hui3ORCID,Yang Qin1,Liu Zhuo1,Wang Yuhong1ORCID,Long Minghui2ORCID

Affiliation:

1. Science and Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan Province 410208, China

2. Hunan Cancer Hospital/The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China

3. The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, Hunan 410007, China

Abstract

Background. Breast-cancer-related depression (BCRD) is associated with an increased mortality rate among breast cancer (BC) survivors. Luteolin has many pharmacological effects, particularly in the treatment of BC. In this study, we aimed to explore the anti-BCRD activity of luteolin and its underlying functional mechanism. Methods. A BCRD mouse model was induced by injecting 4T1 cells and corticosterone (COR). Behavioral test, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, Nissl staining, immunofluorescence, reverse-transcription quantitative PCR (RT-qPCR), and western blotting were used to study the effect of luteolin in mice with BCRD in vivo. A COR-induced neuron injury model was established in HT-22 cells in vitro. The role of miR-124-3p in the anti-BCRD effects of luteolin was studied using a miR-124-3p inhibitor. Results. Luteolin significantly reduced the size and weight of the tumor, increased the mice entry frequency in the symmetrical sector, and reduced the duration of immobility in the tail suspension and forced swimming tests of mice affected by BCRD. Simultaneously, apoptosis of hippocampal neurons was inhibited, and the number of Nissl bodies increased with luteolin treatment. In addition, luteolin resulted in the upregulation of miR-124-3p expression in the hippocampus and downregulated the expression of tumor necrosis factor-α (TNF-α) and TNF receptor-associated factor 6 (TRAF6), as well as lowered the phosphorylation levels of nuclear factor-kappa B (NF-κB) and IkappaB (IκB). Luteolin also inhibited pyroptosis of hippocampal neurons in mice affected by BCRD, as revealed by the low protein levels of NOD-like receptor protein 3 (NLRP3), caspase-1, gasdermin D-N (GSDMD-N), interleukin (IL)-1β, and IL-18. However, the miR-124-3p inhibitor significantly reversed the therapeutic effect of luteolin on COR-induced HT-22 cells. Conclusion. Our study demonstrated that the anti-BCRD function of luteolin was mediated by regulating the miR-124-3p/TNF-α/TRAF6-related pathway and inhibiting neuronal cell pyroptosis and subsequent inflammation. Therefore, luteolin may be a potential drug candidate in the treatments of BCRD.

Funder

Natural Science Foundation of Hunan Province

Publisher

Hindawi Limited

Subject

Complementary and alternative medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3