Water Quality Classification for Inland Lakes and Ponds with Few Color Image Samples Based on Triple-GAN and CSNN

Author:

Yang Zan1ORCID,Nai Wei2ORCID,Li Dan1ORCID,Xing Yidan2ORCID

Affiliation:

1. Faculty of Science, Tongji Zhejiang College, Jiaxing 314051, China

2. Department of Electronic and Information Engineering, Tongji Zhejiang College, Jiaxing 314051, China

Abstract

Water color is an important representation reflecting the characteristics of its quality in inland lakes or ponds; however, sufficient water color image samples are often difficult to obtain due to the limitation of fishery production. For few color image samples, the existing data enhancement methods based on the depth generation model have the problems of low quality of generated data, difficulty of network training, and so on; moreover, for image classification, traditional methods based on convolutional neural network (CNN) cannot effectively extract the potential manifold structure features in the image and the full connection layer in CNN cannot simulate biological neurons well, resulting in high time cost and low efficiency. In this paper, a water quality classification method has been proposed to solve the above problems, the improved semisupervised triple-generation adversarial network (triple-GAN) algorithm is used to enhance the few water color image samples, and the feature data can then be extracted from enhanced data by manifold learning method t-distributed stochastic neighborhood embedding (t-SNE). Moreover, convolutional spiking neural network (CSNN), in which spiking neural network (SNN) has replaced the original full connection layer of CNN, is used for final water quality classification. The main contribution of this paper is to build a new algorithm framework, introduce triple-GAN and CSNN into the field of classification of few water color image samples for the first time, and make an exploration of integrating artificial intelligence (AI) and water quality analysis problems. By comparing with traditional methods, the proposed method is proved to have the advantages of less time-consuming, low operation cost, and high classification accuracy.

Funder

Zhejiang Soft Science Research Project

Publisher

Hindawi Limited

Subject

General Engineering,General Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3