CT Image Feature Diagnosis on the Basis of Deep Learning Algorithm for Preoperative Patients and Complications of Transcatheter Aortic Valve Implantation

Author:

Zheng Xiong1ORCID,Qian Zhang2ORCID,Wang Xiaofang1ORCID,Zhang Zhen1ORCID,Liu Lei1ORCID

Affiliation:

1. Cardiovascular Surgery, Fuyang People's Hospital, Fuyang 236000, Anhui, China

2. Structure I Ward, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing 100037, China

Abstract

This work was aimed to explore the role of CT angiography information provided by deep learning algorithm in the diagnosis and complications of the disease focusing on congenital aortic valve disease and severe aortic valve stenosis. 120 patients who underwent ultrasound cardiography for aortic stenosis and underwent transcatheter aortic valve implantation (TAVI) in hospital were selected as the research objects. Patients received CT examination of deep learning algorithm within one week. The measurement methods were long and short diameter method, area method, and perimeter method. The deep learning algorithm was used to measure the long and short diameter, area, and perimeter of the target area before CT image processing. The results showed that the average diameter of long and short diameter measurement was 95% CI (0.84, 0.92), the average diameter of perimeter measurement was 95% CI (0.68, 0.87), and the average diameter of area measurement was 95% CI (0.72, 0.91). Among the 52 patients, 35 cases were hypertension (67%), 13 cases were diabetes (25%), 6 cases were chronic renal insufficiency (Cr > 2 mg/dL) (11%) (2 cases were treated with hemodialysis, 3.8%), 11 patients had chronic pulmonary disease (21%), 9 patients had cerebrovascular disease (17.3%) and atrial flutter and atrial fibrillation. Deep learning can achieve excellent results in CT image processing, and it was of great significance for the diagnosis of TAVI patients, improving the success rate of treatment and the prognosis of patients.

Publisher

Hindawi Limited

Subject

Health Informatics,Biomedical Engineering,Surgery,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3