IgG-Dependent Dismutation of Superoxide in Patients with Different Types of Multiple Sclerosis and Healthy Subjects

Author:

Smirnova Liudmila P.1ORCID,Mednova Irina A.1,Krotenko Nina M.12,Alifirova Valentina M.2,Ivanova Svetlana A.12ORCID

Affiliation:

1. Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk 634014, Russia

2. Department of Neurology and Neurosurgery, Siberian State Medical University, Tomsk 644050, Russia

Abstract

This work is the first to demonstrate that class G immunoglobulins (IgGs) in patients with multiple sclerosis and healthy individuals have the ability to catalyze the dismutation reaction of the superoxide anion radical. Thus, superoxide dismutase (SOD) activity is an intrinsic property of antibodies, which is confirmed by a number of stringent criteria. SOD activity of IgGs in patients with multiple sclerosis statistically significantly exceeds such activity in healthy individuals by 2-4 times. Moreover, the maximum activity has been registered in patients with relapsing remitting multiple sclerosis. The kinetic characteristics of the SOD reaction of IgGs are several orders of magnitude lower than those for the SOD enzyme but do not differ between patients with multiple sclerosis and healthy individuals. Consequently, abzymes with SOD activity have a lower catalysis rate than that of the enzymes and form a stronger complex with the substrates. Inhibitory analysis showed that this activity is inhibited by classical metal-dependent SOD inhibitors. The activity of IgGs was inhibited by classical metal-dependent inhibitors EDTA and TETA (triethylenetetramine). Also, high catalase activity of IgGs was detected in these patients. We suggest that these abzymes help protect the body from oxidative stress.

Funder

Russian Science Foundation

Publisher

Hindawi Limited

Subject

Cell Biology,Ageing,General Medicine,Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3