Establishment and Validation of a Gene Signature-Based Prognostic Model to Improve Survival Prediction in Adrenocortical Carcinoma Patients

Author:

Ge Xiaoqin12,Liu Zhenzhen1,Jiao Xuehua1,Yin Xueyan1,Wang Xiujie1,Li Gengxu1ORCID

Affiliation:

1. Department of Endocrinology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China

2. Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People’s Hospital of Nantong City, Nantong, China

Abstract

Background. The current guideline for the management of adrenocortical carcinoma (ACC) is insufficient for accurate risk prediction to guide adjuvant therapy. Given frequent and severe therapeutic side effects, a better estimate of survival is warranted for risk-specific assignment to adjuvant treatment. We attempted to construct an integrated model based on a prognostic gene signature and clinicopathological features to improve risk stratification and survival prediction in ACC. Methods. Using a series of bioinformatic and statistical approaches, a gene-expression signature was established and validated in two independent cohorts. By combining the signature with clinicopathological features, a decision tree was generated to improve risk stratification, and a nomogram was constructed to personalize risk prediction. Time-dependent receiver operating characteristic (tROC) and calibration analysis were performed to evaluate the predictive power and accuracy. Results. A three-gene signature could discriminate high-risk patients well in both training and validation cohorts. Multivariate regression analysis demonstrated the signature to be an independent predictor of overall survival. The decision tree could identify risk subgroups powerfully, and the nomogram showed high accuracy of survival prediction. Particularly, expression of a gene hitherto unknown to be dysregulated in ACC, TIGD1, was shown to be prognostically relevant. Conclusion. We propose a novel gene signature to guide decision-making about adjuvant therapy in ACC. The score shows unprecedented survival prediction and hence constitutes a huge step towards personalized management. As a secondary important finding, we report the discovery and validation of a new oncogene, TIGD1, which was consistently overexpressed in ACC. TIGD1 might shed further light on the biology of ACC and might give rise to targeted therapies that not only apply to ACC but potentially also to other malignancies.

Publisher

Hindawi Limited

Subject

Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3