Numerical and Experimental Modal Analysis Applied to an Optical Test System Designed for the Form Measurements of Metre-Scale Optics

Author:

Golanó P. G.1,Zanotti Fragonara L.2ORCID,Morantz P.1,Jourdain R.1

Affiliation:

1. Cranfield University, School of Aerospace, Transportation and Manufacturing, Precision Engineering Institute, College Road, Cranfield MK43 0AL, UK

2. Cranfield University, School of Aerospace, Transportation and Manufacturing, Centre for Autonomous and Cyberphysical Systems, College Road, Cranfield MK43 0AL, UK

Abstract

The work focuses on the structural design and performances of a unique optical test system (OTS) used for measuring metre-scale optical surfaces. The investigation was carried out through a modal analysis. Two sets of results are presented. Both modal analysis of the entire OTS and transmissibility function related to its use as an optical system are carried out and analysed. The OTS is used for the measurements of the form accuracy at nanometre level of metre-scale concave surfaces. The OTS is a four and half-metre-tall mechanical structure made of bolted aluminium profiles, two structural platens, two dedicated precision positioning supports, a test piece, and a state-of-the-art laser interferometer. The OTS was numerically modelled and fully instrumented with triaxial accelerometers. The results of the modal analysis highlight the natural modes of the entire OTS. Both numerical and experimental methods are designed. The investigation methods are iterative. Indeed, a preliminary numerical model is created using finite element analysis (FEA). FEA results enable the determination of the dynamic range and suitable locations of accelerometers that are mounted onto the OTS for the experimental validation of the FEA model and further to carry out the transmissibility study. Natural frequencies, damping ratios, and mode shape values are obtained and scrutinized. These results are used for refining the FEA model. In fact, the lack of symmetry and the use of feet are identified as the key design feature that affects the OTS. The correlation between experimental and numerical results is within five percent for the first four modes. The results of the transmissibility study highlight the specific natural modes that influence the OTS measurement capability. Overall, the study enables to guide engineers and researchers towards a robust design using a validated and methodical approach.

Publisher

Hindawi Limited

Subject

Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Condensed Matter Physics,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3