Fine-Grained Point Cloud Semantic Segmentation of Complex Railway Bridge Scenes from UAVs Using Improved DGCNN

Author:

Qiu Shi123ORCID,Liu Xianhua123ORCID,Peng Jun123ORCID,Wang Weidong123ORCID,Wang Jin123ORCID,Wang Sicheng123ORCID,Xiong Jianping4,Hu Wenbo5ORCID

Affiliation:

1. School of Civil Engineering, Central South University, Changsha 410075, China

2. MOE Key Laboratory of Engineering Structures of Heavy-Haul Railway, Central South University, Changsha 410075, China

3. Center for Railway Infrastructure Smart Monitoring and Management, Central South University, Changsha 410075, China

4. Guangxi Transportation Science and Technology Group Co., Ltd., Nanning 530006, China

5. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China

Abstract

Automatic semantic segmentation of point clouds in railway bridge scenes is a crucial step in the digitization process and is required for a variety of subapplications including digital twin reconstruction and component geometric quality verification. This paper details a method for reliably and effectively segmenting point clouds acquired from complex railway bridge scenes by unmanned aerial vehicles (UAVs). The method involves segmenting seven common infrastructure elements in railway bridge point clouds using an improved DGCNN after processing low-quality point clouds from UAVs with a score-based denoising algorithm. The segmentation performance of the network is measured by averaging the intersection to union ratio between the segmentation results and the true labels of different elements, i.e., the mean intersection over union (mIoU). The proposed method is evaluated on three different scenes of railway bridges and achieved mIoU values of 99.18%, 90.76%, and 85.84%, respectively, at three levels of complexity ranging from easy to difficult. The results demonstrate that the proposed method captures the most discriminative features from low-quality point clouds, allowing for the accurate and efficient digital representation of railway bridge scenes.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

Mechanics of Materials,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3