Affiliation:
1. School of Mathematics and Computer Science, Shanxi Normal University, Gongyuanjie Road, 041000 Linfen, China
Abstract
The attenuated X-ray transform arises from the image reconstruction in single-photon emission computed tomography. The theory of attenuated X-ray transforms is so far incomplete, and many questions remain open. This paper is devoted to the inversion of the attenuated X-ray transforms with nonnegative varying attenuation functions μ, integrable on any straight line of the plane. By constructing the symmetric attenuated X-ray transform Aμ on the plane and using the method of Riesz potentials, we obtain the inversion formula of the attenuated X-ray transforms on Lpℝ21≤p<2 space, with nonnegative attenuation functions μ, integrable on any straight line in ℝ2. These results are succinct and may be used in the type of computerized tomography with attenuation.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献