Affiliation:
1. Department of Mathematics, Kangwon National University, Chuncheon 200-701, Republic of Korea
Abstract
The stabilized Gauge-Uzawa method (SGUM), which is a 2nd-order projection type algorithm used to solve Navier-Stokes equations, has been newly constructed in the work of Pyo, 2013. In this paper, we apply the SGUM to the evolution Boussinesq equations, which model the thermal driven motion of incompressible fluids. We prove that SGUM is unconditionally stable, and we perform error estimations on the fully discrete finite element space via variational approach for the velocity, pressure, and temperature, the three physical unknowns. We conclude with numerical tests to check accuracy and physically relevant numerical simulations, the Bénard convection problem and the thermal driven cavity flow.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献