The Chromatin Pattern of Cell Nuclei Is of Prognostic Value for Renal Cell Carcinomas

Author:

François Christine1,Remmelink Myriam2,Petein Michel2,van Velthoven Roland3,Danguy André1,Wespes Eric4,Salmon Isabelle2,Kiss Robert1,Decaestecker Christine1

Affiliation:

1. Laboratory of Histology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium

2. Department of Pathology, Erasmus University Hospital, Brussels, Belgium

3. Division of Urology, Department of Surgery, J. Bordet Institute, Brussels, Belgium

4. Department of Urology, Erasmus University Hospital, Brussels, Belgium

Abstract

Using a series of 105 renal cell carcinomas (RCCs) we investigated whether features quantitatively describing the appearance of Feulgen‐stained nuclei and, more particularly, of their chromatin (on the basis of computer‐assisted microscopy) can contribute any significant prognostic information. Thirty morphonuclear and 8 nuclear DNA content‐related variables were thus generated. The actual prognostic values of this set of cytometric variables was compared (by means of discriminant statistical analysis) to conventional diagnostic and/or prognostic markers including histopathological grades, tumour invasion levels and the presence or absence of metastases. We obtained complete clinical follow‐ups for 49 of the 105 RCC patients under study, making it possible to define a subset of patients with a bad prognosis (i.e., who died in the 12 months following nephrectomy) and a subset of patients with a good prognosis (i.e., who survived at least 24 months following nephrectomy). An original method of data analysis related to artificial intelligence (decision tree induction) enabled a strong prognostic model to be set up. In the case of 10 new patients, this model identified all the dead patients as having a bad survival status, with a total of 8 correct predictions. Another prognostic model similarly generated enabled the correct predictions to be confirmed.

Funder

Fond de la Recherche Scientifique Médicale

Publisher

Hindawi Limited

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3