Understanding of Long-Term CO2-Brine-Rock Geochemical Reactions Using Numerical Modeling and Natural Analogue Study

Author:

Zhu Huixing1ORCID,Xu Tianfu1ORCID,Tian Hailong1ORCID,Feng Guanhong1,Yang Zhijie1,Zhou Bing2

Affiliation:

1. Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China

2. Petroleum Exploration & Production Research Institute, SINOPEC, Beijing 100083, China

Abstract

To further understand the interactions of CO2-brine-rock at geological time scales, in this study, a 1D reactive transport model of CO2 intrusion into sandstone of the Longtan Formation (P2l) in the Huangqiao area, China, was constructed based on site-specific data. The simulation time is consistent with the retention time of CO2 in the Longtan sandstone Formation and is set to 20 Ma. The reactive transport model is calibrated and revised using the measured data for sandstone samples from Well X3 (i.e., the natural analogue). By comparing the simulation results with measured data for the natural analogue, the long-term geochemical reactions are investigated. The simulation results indicate that the brine-rock interactions induced by CO2 can be roughly divided into two stages. First, susceptible minerals (e.g., chlorite, ankerite, calcite, and feldspar minerals) dissolve rapidly under acidic conditions formed by the dissolution of CO2. The precipitation of siderite is facilitated by the dissolution of ankerite and chlorite. Smectite-Ca and dawsonite precipitate due to the dissolution of anorthite and albite, respectively. Dawsonite begins to convert into smectite-Na when albite is completely dissolved. As the reactions continue, intermediate products (i.e., illite, smectite-Na, and smectite-Ca) generated in the first stage become the reactants and subsequently react with CO2 and brine. These three clay minerals are not stable under acidic conditions and transform into kaolinite and paragenetic quartz in the later stage of reaction. Comparing the simulation results of the Base Case with the measured data for the natural analogue and inspired by previous studies, the scour of kaolinite is supposed to have occurred in this region and is considered in the revised model by introducing a coefficient of the scour of kaolinite (i.e., Case 2). The simulation results of Case 2 fit well with the measured data on mineral assemblage, and the trend of the sandstone porosity growth caused by the CO2-brine-rock reaction is captured by our simulation results. The combination of numerical simulation and natural analogue study indicates that the joint effects of long-term CO2-brine-rock reactions and scour of kaolinite increase the pore space of the host rock and result in an increase in quartz content in the sandstone.

Funder

Jilin University

Publisher

Hindawi Limited

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3