Study on the Stability of Unpackaged CdS/CdTe Solar Cells with Different Structures

Author:

Zeng Guanggen12ORCID,Liu Xiaolan1,Zhao Yubo1,Shi Yuanmao1,Li Bing1,Zhang Jingquan1,Feng Lianghuan1,Wang Qionghua2ORCID

Affiliation:

1. College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China

2. College of Electronics and Information Engineering, Sichuan University, Chengdu 610065, China

Abstract

In this work, the stability of unpackaged CdTe solar cells with different configurations was investigated according to the International Electrotechnical Commission IEC 61215-2016. The measurements of thermal cycling from -40°C to +85°C and 24-hour temperature cycling from -40°C to +85°C withstanding the effects of 20-hour penetration of 85°C were carried out in CdS/CdTe solar cells with structures of FTO/CdS/CdTe/Au, FTO/CdS/CdTe/back contact/Au, and FTO/MZO/CdS/CdTe/back contact/Au, respectively. The performances of these cells before and after the thermal aging experiments were investigated by using light and dark IV together with CV. The results reveal varied performance degradation before and after thermal aging in the cells with different structures. Among these, the most deteriorated device is the one without back contact (BC), whose efficiency decreased by 25.12% after thermal cycling accompanying an obvious roll-over phenomenon when forward bias was greater than open circuit voltage. On the contrary, the reduction in the efficiency was about 16.80% in the case cells with BC, and the roll-over phenomenon was not so significant. Furthermore, for the devices with optimized front contact of FTO/MZO, the thermal stability was improved obviously. Interestingly, short-circuit current density associated with the carrier concentration of cells remained relatively small variations compared with the change of Voc and fill factor. All the results indicated that an efficient back contact layer and an optimized front electrode were the indispensable structural elements to attain high stabilization in the CdS/CdTe solar cells.

Funder

Fundamental Research Funds for the Central Universities

Publisher

Hindawi Limited

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment,Atomic and Molecular Physics, and Optics,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. II-VI Wide-Bandgap Semiconductor Device Technology: Stability and Oxidation;Handbook of II-VI Semiconductor-Based Sensors and Radiation Detectors;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3