Decentralized Optimization Algorithms for Variable Speed Pumps Operation Based on Local Interaction Game

Author:

Wang Shi-Qiang1ORCID,Xing Jian-Chun1ORCID,Jiang Zi-Yan2,Dai Yun-Chuang2

Affiliation:

1. College of Defense Engineering, Army Engineering University of PLA, Nanjing, Jiangsu 210001, China

2. Building Energy Research Center of Tsinghua University, Beijing 100084, China

Abstract

A fully distributed optimal control strategy for the parallel variable speed pumps in heating, ventilation, and air-conditioning (HVAC) systems is proposed. Compared with the traditional centralized method, the efficient control and coordination are scattered to every updated smart pump without the need for a monitoring host. Similar to the structure, mechanism, and characteristics of biological communities, a smart pump can communicate with adjacent nodes and operate collaboratively to complete pumps group operation with the least total power consumption under load demand and system constraints. And a decentralized optimization method that is decentralized estimation of distribution algorithm (DEDA) under local interaction games framework has been transplanted to the proposed structure to optimize the pumps working in parallel mode. Besides, convergence property of the two novel mechanisms is analyzed theoretically. Finally, simulation studies have been conducted based on the models of a physical pumps system, and the performance of the proposed algorithm is compared with centralized algorithms in terms of both effectiveness and stability. The results provide support for the validity of the proposed algorithms and control structure.

Funder

National Key Research and Development Program of China

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Computer Science Applications,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3